DatasheetArchive.om

Request For Quotation

Order the parts you need from our real-time inventory database. Simply complete a request for quotation form with your part information and a sales representative will respond to you with price and availability.

Request For Quotation

Your free datasheet starts on the next page.

More datasheets and data books are available from our homepage: http://www.datasheetarchive.com BUT92

FAST-SWITCHING POWER TRANSISTOR

- STMicroelectronics PREFERRED SALESTYPE
- NPN TRANSISTOR
- $\mathrm{h}_{\text {FE }}>10$ AT $\mathrm{I}_{\mathrm{C}}=35 \mathrm{~A}$
- HIGH EFFICIENCY SWITCHING
- VERY LOW SATURATION VOLTAGE
- RECTANGULAR SAFE OPERATING AREA
- WIDE ACCIDENTAL OVERLOAD AREA

APPLICATIONS

- UNINTERRUPTABLE POWER SUPPLY
- SWITCH MODE POWER SUPPLIES
- MOTOR CONTROL

DESCRIPTION

The BUT92 is a Multiepitaxial Planar NPN Transistor in TO-3 package. It is intended for use in high frequency and efficency converters, switching regulators and motor control.

INTERNAL SCHEMATIC DIAGRAM

TO-3
(version "S")

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CEV}}$	Collector-Emitter Voltage $\left(\mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V}\right)$	350	V
$\mathrm{~V}_{\text {CEO }}$	Collector-Emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	250	V
$\mathrm{~V}_{\text {EBO }}$	Emitter-Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0\right)$	7	V
I_{E}	Emitter Current	50	A
I_{EM}	Emitter Peak Current $\left(\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}\right)$	75	A
I_{B}	Base Current	10	A
I_{BM}	Base Peak Current $\quad\left(\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}\right)$	15	A
$\mathrm{P}_{\text {tot }}$	Total Power Dissipation at $\mathrm{T}_{\text {case }} \leq 25^{\circ} \mathrm{C}$	250	W
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to 200	${ }^{\circ} \mathrm{C}$
T_{j}	Junction Temperature	200	${ }^{\circ} \mathrm{C}$

THERMAL DATA

$R_{\text {thj-case }}$	Thermal Resistance Junction-case	Max	0.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
ICER	Collector Cut-off Current ($\mathrm{R}_{\mathrm{BE}}=10 \Omega$)	$\begin{array}{ll} V_{C E}=V_{C E V} & \\ V_{C E}=V_{C E V} & T_{C}=10{ }^{\circ} \mathrm{C} \end{array}$			$\begin{gathered} 0.4 \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
ICEV	Collector Cut-off Current (V BE $=-1.5 \mathrm{~V}$)	$\begin{array}{ll} \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CEV}} & \\ \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CEV}} & \mathrm{~T}_{\mathrm{C}}=10{ }^{\circ} \mathrm{C} \end{array}$			$\begin{gathered} 0.2 \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$
Iebo	Emitter Cut-off Current ($\mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{V}_{\mathrm{EB}}=7 \mathrm{~V}$			1	mA
$\mathrm{V}_{\text {CEO(sus)* }}$	Collector-Emitter Sustaining Voltage $\left(I_{B}=0\right)$	$\mathrm{IC}=0.2 \mathrm{~A} \quad \mathrm{~L}=25 \mathrm{mH}$	250			V
$V_{\text {Ebo }}$	Emitter-Base Voltage $\left(I_{C}=0\right)$	$\mathrm{I}_{\mathrm{E}}=50 \mathrm{~mA}$	7			V
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}{ }^{*}$	Collector-Emitter Saturation Voltage	$\begin{array}{lll} \mathrm{I}_{\mathrm{C}}=35 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=3.5 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{C}}=35 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=3.5 \mathrm{~A} & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{array}$		$\begin{gathered} 0.8 \\ 1.25 \end{gathered}$	$\begin{aligned} & 1.2 \\ & 1.9 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{BE} \text { (sat)* }}$	Base-Emitter Saturation Voltage	$\begin{array}{lll} \mathrm{I}_{\mathrm{C}}=35 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=3.5 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{C}}=35 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=3.5 \mathrm{~A} & \mathrm{~T}_{\mathrm{C}}=10{ }^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
dic/dt	Rated of Rise on-state Collector Current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=200 \mathrm{~V} & \mathrm{I}_{\mathrm{B} 1}=5.25 \mathrm{~A} \quad \mathrm{R}_{\mathrm{C}}=0 \\ \mathrm{t}_{\mathrm{p}}=3 \mu \mathrm{~S} & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{array}$	125	200		A/ $\mu \mathrm{s}$
$\mathrm{V}_{\mathrm{CE}(3 \mu \mathrm{~s})}$ *	Collector-Emitter Dynamic Voltage	$\begin{array}{\|ll} \hline \mathrm{V}_{\mathrm{CC}}=200 \mathrm{~V} & \mathrm{I}_{\mathrm{B} 1}=5.25 \mathrm{~A} \\ \mathrm{R}_{\mathrm{C}}=5.7 \Omega & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \\ \hline \end{array}$		3	6	V
$\mathrm{V}_{\mathrm{CE} \text { (5 } \mu \mathrm{s} \text {)* }}$	Collector-Emitter Dynamic Voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=200 \mathrm{~V} & \mathrm{I}_{\mathrm{B} 1}=5.25 \mathrm{~A} \\ \mathrm{R}_{\mathrm{C}}=5.7 \Omega & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{array}$		1.8	3	V

INDUCTIVE LOAD

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \\ & \mathrm{t}_{\mathrm{c}} \end{aligned}$	Storage Time Fall Time Crossover Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=200 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=35 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{B} 2}=0.7 \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {Clamp }}=250 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{B} 1}=3.5 \mathrm{~A} \\ & \mathrm{~L}_{\mathrm{C}}=0.28 \mathrm{mH} \\ & \mathrm{~T}_{\mathrm{C}}=100{ }^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 1.4 \\ 0.15 \\ 0.3 \end{gathered}$	$\begin{gathered} 3 \\ 0.4 \\ 0.7 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
$V_{\text {cew }}$	Maximum Collector Emitter Voltage without Snubber	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \\ & \mathrm{~L}_{\mathrm{C}}=48 \mu \mathrm{H} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{cWoff}}=52 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 1}=3.5 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{B} 2}=0.7 \Omega \end{aligned}$	250			V

[^0]
TO-3 (version S) MECHANICAL DATA

DIM.	mm				inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	11.00		13.10	0.433		0.516
B	1.47		1.60	0.058		0.063
C	1.50		1.65	0.059		0.065
D	8.32		8.92	0.327		0.351
E	19.00		20.00	0.748		0.787
G	10.70		11.10	0.421		0.437
N	16.50		17.20	0.649		0.677
P	25.00		26.00	0.984		1.023
U	4.00		4.09	0.157		0.161
V	30.50		39.30	1.515		1.547

P003O

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com

[^0]: * Pulsed : Pulse duration = $300 \mu \mathrm{~s}$, duty cycle = 2%

